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Abstract. The linear complexity and k-error linear complexity of
sequences are important measures of the strength of key-streams gener-
ated by stream ciphers. Fu et al. studied the distribution of 2n-periodic
binary sequences with 1-error linear complexity in their SETA 2006
paper. Recently, people have strenuously promoted the solving of this
problem from k = 2 to k = 4 step by step. Unfortunately, it still remains
difficult to obtain the solutions for larger k. In this paper, we propose a
new sieve method to solve this problem. We first define an equivalence
relationship on error sequences and build a relation between the number
of sequences with given k-error linear complexity and the number of pair-
wise non-equivalent error sequences. We introduce the concept of cube
fragment and build specific equivalence relation based on the concept
of the cube classes to figure out the number of pairwise non-equivalent
error sequences. By establishing counting functions for several base cases
and building recurrence relations for different cases of k and L, it is easy
to manually get the complete counting function when k is not too large.
And an efficient algorithm can be derived from this method to solve the
problem using a computer when k is large.

Keywords: Sequence · Linear complexity · k-Error linear complexity ·
Counting function · Cube theory

1 Introduction

The linear complexity of sequence S = (s0s1s2...), denoted by LC(S), is defined
as the length of the shortest linear feedback shift register (LFSR) that can gener-
ate S. Using Berlekamp-Massey algorithm [6], the LFSR that generates a given
sequence can be determined by using only the first 2L elements of the sequence,
where L is the linear complexity of the sequence.

For a positive integer N , the sequence S is called N -periodic if si+N = si
for all i ≥ 0. Denote the set of all N -periodic binary sequence by SN . For any
sequence S ∈ SN , define the polynomial corresponding to S as

S(x) = s0 + s1x + s2x
2 + ... + sN−1x

N−1.
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Lemma 1 [1]. The linear complexity of the N -periodic binary sequence S
denoted by LC(S) is given by

LC(S) = N − deg(gcd(xN + 1, S(x))).

where S(x) = s0 + s1x + s2x
2 + ... + sN−1x

N−1 is the corresponding polynomial.

Given a sequence S ∈ SN and a number m, where 0 ≤ m < N ,
we denote the Hamming weight of S and that of m as wH(S) and wH(m)
which means the number of nonzero elements in S and the number of 1 in
the binary representation of m. For any two sequences S, S′ ∈ SN , where
S = (s0s1...sN−1), S′ = (s′

0s
′
1...s

′
N−1), we define the summation of the two

sequences as S + S′ = (u0u1...uN−1), where ui = si + s′
i.

For a cryptographically strong sequence, the linear complexity should not
decrease drastically if a few symbols are changed. That means the linear com-
plexity should be stable when we change some bits of the stream. This observa-
tion gives rise to the concept of k-error linear complexity of sequences which is
introduced in [1,10].

Definition 1 [1,10]. For any sequence S ∈ SN , denote the k-error linear com-
plexity of S by LCk(S) which is given by

LCk(S) = min
E∈SN , wH(E)≤k

LC(S + E)

where 0 ≤ k ≤ N and the sequence E is called the error sequence.

The counting function of a sequence complexity measure gives the number
of sequences with a given complexity measure value. It is useful to determine
the expected value and variance of a given complexity measure of a family of
sequences. Besides, the exact number of available good sequences with high
complexity measure value in a family of sequences can be known. Rueppel [9]
determined the counting function of linear complexity for 2n-periodic binary
sequences as follow:

Lemma 2 [9]. Let N (L) and A(L) respectively denote the number of and the
set of 2n-periodic binary sequences with given linear complexity L, where 0 ≤
L ≤ 2n. Then

N (0) = 1, A(0) = {(00 · · · 0)}, and

N (L) = 2
L−1

, A(L) = {S ∈ S
2n

: S(x) = (1 + x)
2n−L

a(x), a(1) �= 0} for 1 ≤ L ≤ 2
n
.

In this paper, we study the counting function for the number of 2n-periodic
binary sequences with given k-error linear complexity. By using algebraic and
combinatorial methods, Fu et al. [2] derived the counting function for the
1-error linear complexity in their SETA 2006 paper. Kavuluru [3,4] character-
ized 2n-periodic binary sequences with given 2-error or 3-error linear complexity
and obtained the counting functions. Unfortunately, those results in [3,4] on
the counting function of 3-error linear complexity are not completely correct
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[11]. After that, Zhou et al. use sieve method of combinations to sieve sequences
S + E with LCk(S + E) = L in S + E where S = {S ∈ SN : LC(S) = L},
E = {E ∈ SN : wH(E) ≤ k} and S + E = {S + E : S ∈ S and E ∈ E}. And
they obtained the complete counting functions for k = 2, 3 [13]. In the informal
publication paper [12], Zhou et al. also study the counting functions for k = 4, 5.
In the paper [8], Ming Su proposes a novel decomposing approach to study the
complete set of error sequences and get the counting function for k ≤ 4. However,
those methods will become very complex when k becomes larger.

In this paper we propose a new sieve method to study this problem. Firstly,
we define an equivalence relationship on error sequences and build a relation
between the number of sequences with given k-error linear complexity and the
number of pairwise non-equivalent error sequences. We propose a sieve process
to figure out the number of counted pairwise non-equivalent error sequences.
During the sieve process, a concept of cube fragment are used to characterize
error sequences and to determine whether an error sequence should be sieved.
By using the cube fragment and building specific equivalence relation based on
cube classes, and by combinational theory we get the number of pairwise non-
equivalent error sequences. By establishing counting functions for several base
cases and building recurrence relations for different cases of k and L, it is easy
to manually get the complete counting function when k is not too large. And an
efficient algorithm can be derived from this method to solve the problem using
a computer when k is large. Experiment results got by the implementation of
the algorithm are shown in Table 2, which is unfeasible to get by other methods
and by native exhaustive method.

Notice that, we analyze error sequences, instead of analyzing the resulted
modified sequences which is did in [13]. That contributes to the simplicity of
the method. The original cube concepts are introduced to compute the stable
k-error linear complexity of periodic sequences in [14]. In this paper, we extend
the concept of cubes to cube fragment and cube class to get counting functions.

2 Preliminaries

This section sets up notations and summarizes preliminary facts used in subse-
quent sections.

Lemma 3 [7]. Let S be a 2n-periodic binary sequence. Then LC(S) = 2n if and
only if the Hamming weight of the sequence S is odd.

By Lemma 3, modifying only one bit in a binary sequence with periodic 2n will
result in the change of the linear complexity of this sequence. Consequently, we
can resolve the problem of characterization of 2n-periodic binary sequences with
given k-error linear complexity into two sub-problems which will be introduced
in detail at the end of this section.

Lemma 4 [7]. Let S and S′ be two 2n-periodic binary sequences. Then we have
LC(S + S′) = max{LC(S), LC(S′)} if LC(S) �= LC(S′), and LC(S + S′) <
LC(S) for otherwise.
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Lemma 4 shows that to decrease the linear complexity of a given 2n-periodic
binary sequence by adding an error sequence, the error sequence must have the
same linear complexity with the given sequence.

For a given sequence S ∈ SN , denote merr(S) = min{k : LCk(S) < LC(S)}
which indicates the minimum value k such that LCk < LC(S), and which is
called the first descend point of linear complexity of S. Kurosawa et al. in [5]
derived a formula for the exact value of merr(S).

Lemma 5 [5]. Let S be a nonzero 2n-periodic binary sequence, then merr(S) =
2wH(2n−LC(S)).

Lemma 5 shows a relation between linear complexity and k-error linear complex-
ity of a sequence, that is, we must modify at least 2wH(2n−LC(S)) bits in sequence
S to decrease the linear complexity of S.

For a given sequence S ∈ SN , denote the support set of S by supp(S),
which is the set of positions of the nonzero elements in S, that is, supp(S) =
{i : si �= 0, 0 ≤ i < N}. And we also call the elements in supp(S) as points.
Let Zm = {0, 1, 2, · · · ,m − 1} and denote P(Zm) the power set of Zm which
is the set of all subsets of Zm, that is P(Zm) = {U : U ⊆ Zm}. Notice that
the set P(ZN ) is one to one corresponding to SN . Especially, the empty set in
P(ZN ) corresponds to the all-zero sequence in SN . Hence, we define the linear
complexity of a set U ∈ P(ZN ) as the linear complexity of the sequence which
it is corresponding to.

In [14], the authors use cube theorem to study the stable k-error linear com-
plexity of periodic sequences. In this paper we use support set to define a cube
which will be convenient for us to propose the concept of cube fragment and to
study the counting functions.

Definition 2. Let u, v be two different none-negative integers, we define the
distance between u and v as 2t and denote d(u, v) = 2t if |u − v| = 2tb and 2 � |b.
According to the definition of distance, it can easily be verified that for any dif-
ferent none-negative integers u1, u2, u3, if d(u1, u2) = d(u1, u3), then d(u2, u3) >
d(u1, u2), otherwise d(u2, u3) = min{d(u1, u2), d(u1, u3)}.

Definition 3. Let U, V be two nonempty subsets of ZN , define the distance
between U and V as:

d(U, V ) =

{
min{d(u, v) : u ∈ U, v ∈ V }, U

⋂
V = ∅

0 otherwise
.

Lemma 6. Let U, V be two nonempty subsets of ZN . If 0 < d(U, V ) <
min{d(U), d(V )}, then U

⋂
V = ∅ and d(u, v) = d(U, V ) for any u ∈ U, v ∈ V.

Proof. Because d(U, V ) > 0, then U
⋂

V = ∅. Suppose d(U, V ) = d(u0, v0)
where u0 ∈ U, v0 ∈ V . Then for any u ∈ U, v ∈ V , according to Definitions 2
and 3, we have d(u, v0) = min{d(u, u0), d(u0, v0)} = d(u0, v0). Then d(u, v) =
min{d(u, v0), d(v0, v)} = d(u0, v0) = d(U, V ). �
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Definition 4 (Cube). Let U = {u1, u2, ..., u2T } be a subset of ZN .

– In the case of T = 0, there is only one point in U and we call U as a 0-cube
with sides of length +∞. Denote the set of all 0-cubes by Cube+∞.

– In the case of T = 1, there are two points in U and we call U as a 1-cube.
If the distance between the two points in U is 2i1 , then we say U is a 1-cube
with sides of length {2i1}. We denote the set of all 1-cubes with sides of length
2i1 by Cube2i1 .

– In the case of T = 2, there are four points in U . If U can be decomposed into
two disjoint 1-cubes U ′ and U ′′, such that U ′, U ′′ ∈ Cube2i1 and d(U ′, U ′′) =
2i2 (i1 > i2), then we call U as a 2-cube with sides of length {2i1 , 2i2}. We
denote the set of all 2-cubes with sides of length {2i1 , 2i2} by Cube2i1 ,2i2 .

– Generally, in the case of T > 2, U has 2T points. Recursively, if U can be
decomposed into two disjoint (T − 1)-cubes U ′ and U ′′, such that U ′, U ′′ ∈
Cube2i1 ,2i2 ,...,2iT−1 and d(U ′, U ′′) = 2iT (i1 > i2 > · · · > iT ), then we
call U as a T -cube. We denote the set of all T-cubes with sides length of
{2i1 , 2i2 , · · · , 2iT } by Cube2i1 ,2i2 ,...,2iT .

We remark that a cube represents a subset of ZN with a special structure and
“Cube” represents a class of subsets of ZN with the same structure. According
to Lemma 1, we can easily know that the linear complexity of a cube with sides
of length {2i1 , 2i2 , · · · , 2iT } is 2n − (2i1 + 2i2 + · · · + 2iT ).

Example 1. Let set U = {1, 2, 5, 6, 18, 22, 49, 53}.
As U = {1, 5, 49, 53}⋃{2, 6, 18, 22} and {1, 5, 49, 53} = {1, 49}⋃{5, 53},
{2, 6, 18, 22} = {2, 18}⋃{6, 22}, then U is a cube with sides of length {16, 4, 1}.

Following the notation in [2,3,13], we denote by Ak(L) and Nk(L) the set of
and the number of the sequences in S2n of which the k-error linear complexity
being L, that is

Ak(L) := {S ∈ S2n : LCk(S) = L} and Nk(L) :=
∣∣Ak(L)

∣∣.
When k = 0, Ak(L) and Nk(L) degenerated to A(L) and N (L).

Let us first consider the following trivial cases when L = 2n, L = 0 and
k ≥ 2n−1 before a full investigation on Ak(L) and Nk(L). When L = 2n, from
Lemma 3, we have that for any k ≥ 1,

Ak(2n) = ∅, Nk(2n) = 0.

Because only all-zero sequence has 0 linear complexity and only all-one sequence
has 1 linear complexity, we always have

Ak(0) = {S ∈ S2n : wH(S) ≤ k}, Nk(0) =
k∑

j=0

(
2n

j

)
,

and for k < 2n−1 we have
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Ak(1) = {S ∈ S2n : wH(S) ≥ 2n − k}, Nk(1) =
2n∑

j=2n−k

(
2n

j

)
=

k∑
j=0

(
2n

j

)
.

Because a sequence can always be modified to be all-zero or all-one by chang-
ing no more than k bits when k ≥ 2n−1, thus when k ≥ 2n−1 we have

Ak(1) = {S ∈ S2n : wH(S) > k}, Nk(1) =
2n∑

j=k+1

(
2n

j

)
,

Ak(L) = ∅, Nk(L) = 0 for L �= 0 and 1.

Henceforth, we need only consider the cases when 1 < L < 2n and k < 2n−1.
Thus we suppose 1 < L < 2n and 0 < k < 2n−1 for the rest of this paper.

For two given sequences S, S′ ∈ S2n , we denote the Hamming distance
between the two sequences by dH(S, S′) which represents the number of dif-
ferent bits between the two sequences, that is, dH(S, S′) = wH(S + S′). Then
for any sequences S ∈ Ak(L), there exists S′ ∈ A(L) such that dH(S, S′) ≤ k.
Therefore we have

Ak(L) ⊆
k⋃

j=0

(A(L) + Ej)

where Ej = {S ∈ S2n : wH(S) = j} and A(L) +Ej = {S + E : S ∈ A(L), E ∈
Ej}. We denote E =

⋃k
j=0 Ej .

Similar to [13], we decompose the set Ak(L) into two subsets based on
whether the linear complexity of the sequences equal to its period or not. Let
A′

k(L) and N ′
k(L) respectively denote the set of and the number of 2n-periodic

binary sequences with given k-error linear complexity L ( 0 < L < 2n) and with
linear complexity less than 2n, that is

A′
k(L) := {S ∈ S2n : LCk(S) = L and LC(S) < 2n}, N ′

k(L) :=
∣∣A′

k

∣∣,
and let A′′

k(L) and N ′′
k (L) respectively denote the set of and the number of 2n-

periodic binary sequences with given k-error linear complexity L ( 0 < L < 2n)
and with linear complexity equal to 2n, that is

A′′
k(L) := {S ∈ S2n : LCk(S) = L and LC(S) = 2n}, N ′′

k (L) :=
∣∣A′′

k

∣∣.
Applying Lemma 3, we get

A′
k(L) ⊆

� k
2 	⋃

m=0

(A(L) + E2m), A′′
k(L) ⊆

� k−1
2 	⋃

m=0

(A(L) + E2m+1).

In the following, we first study the set A′
k(L) when k is even and then we

will reduce other cases into this case.
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3 Characterization of A′
k(L) When k is even

We first define an equivalence relationship on the error sequences set E.

Lemma 7 [3]. Let E and E′ be two error sequences in E. Then

A(L) + E = A(L) + E′ or (A(L) + E)
⋂

(A(L) + E′) = ∅.

Corollary 1. Let E and E′ be two error sequences in E. We have that A(L) +
E = A(L)+E′ if and only if there exists S, S′ ∈ A(L) such that S+E = S′+E′.

Proof. Assume there exists S, S′ ∈ A(L) such that S+E = S′+E′. And suppose
the corresponding polynomials of S and S′ are S(x) = (1+x)2

n−La(x), S′(x) =
(1+x)2

n−Lb(x) respectively where a(1) = b(1) = 1 and deg(a(x)), deg(b(x)) < L.
For any sequence S′′ in A(L), suppose the corresponding polynomial of S′′ is
S′′(x) = (1 + x)2

n−Lc(x) where c(1) = 1 and deg(c(x)) < L, we have S′′ + E =
S′′ + S + S′ + E′. Because (S′′ + S + S′)(x) = (1 + x)2

n−L(a(x) + b(x) + c(x)),
denote d(x) = a(x) + b(x) + c(x), and d(1) = 1, deg(d(x)) < L, we have S′′ +
S + S′ ∈ A(L). Therefore we have S′′ + E ∈ A(L) + E′. Similarly, we have
S + E′ ∈ A(L) + E for any S in A(L). Thus we have A(L) + E = A(L) + E′.
The backward direction is obvious. �

Definition 5. Let E and E′ be two error sequences in E. We call E and E′

equivalent if A(L) + E = A(L) + E′. And we denote this by E ∼ E′.

we remark that this equivalence relation is defined under a given linear complex-
ity L. According to Lemma 3, the Hamming weight of equivalent error sequences
have the same odd or even parity.

Theorem 1. Let E and E′ be two error sequences in E. We have E ∼ E′ if
and only if LC(E + E′) < L.

Proof. Assume E ∼ E′, then there exist two sequences S, S′ ∈ A(L) such that
S + E = S′ + E′. Then we have LC(E + E′) = LC(S + S′) < L.

Assume LC(E + E′) < L, suppose E(x) + E′(x) = (E + E′)(x) = (1 +
x)2

n−lb(x), where l < L and b(1) = 1. For any sequence S ∈ A(L), suppose
S(x) = (1 + x)2

n−La(x), where a(1) = 1. We have E(x) + S(x) = E′(x) +
(1 + x)2

n−la(x) + S(x) = E′(x) + (1 + x)2
n−L(a(x) + (1 + x)L−lb(x)). Because

a(x) + (1 + x)L−lb(x) = 1 when x = 1, we have S′ ∈ A(L) where S′(x) =
(1+x)2

n−L(a(x)+(1+x)L−lb(x)). According to Corollary 1, we have A(L)+E =
A(L) + E′, thus we get E ∼ E′. �

Theorem 2. Let E be an error sequence in E, then we have

A(L) + E ⊆ Ak(L) or (A(L) + E)
⋂

Ak(L) = ∅.
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Proof. Assume there exists S ∈ A(L) such that LCk(S + E) = L. On account
of LCk(S + E) = minE′∈E LC(S + E + E′), it follows that LC(E + E′) �= L
for any E′ ∈ E, otherwise LCk(S + E) < L. Thus for any S′ ∈ A(L), we have
LCk(S′ + E) = minE′∈E LC(S′ + E + E′) = minE′∈E max{LC(S′), LC(E +
E′)} ≥ L. Considering that LCk(S′ + E) ≤ LC(S′ + E + E) = LC(S′) = L, so
LCk(S′ + E) = L, that is A(L) + E ⊆ Ak(L). So for any E ∈ E, we have either
A(L) + E ⊆ Ak(L) or (A(L) + E)

⋂ Ak(L) = ∅. �

From the above, we can know that for a given error sequence E, either all of
the sequences in A(L) + E are in Ak(L) or none of them is in Ak(L). It follows
that to get the value of Nk(L), we can figure out how many equivalence classes
the set E is split into, and in how many of them an element E leads all of the
sequences in A(L) + E to be in Ak(L).

For a given L = 2n − (2n−r1 +2n−r2 + ...+2n−rT ), where 0 < r1 < r2 < ... <
rT ≤ n, T = wH(2n − L) and 1 ≤ T < n, we define the following cube classes:

C2 :=

r1−1⋃

t=1

Cube2n−t , C2 := Cube2n−r1 ,

C4 :=

r2−1⋃

t=r1+1

Cube2n−r1 ,2n−t , C4 := Cube2n−r1 ,2n−r2 ,

...
...

C2T :=

rT −1⋃

t=rT−1+1

Cube
2n−r1 ,2n−r2 ,...,2

n−rT−1 ,2n−t . C2T := Cube2n−r1 ,2n−r2 ,··· ,2n−rT ,

and

C :=

T⋃

i=1

C2i , C := C2T .

Furthermore, we denote:

C(p) := {U ⊆ Z2n : |U | = p, ∃V ∈ C, s.t U ⊆ V }, for 1 ≤ p ≤ 2T ,

C2i(p) := {U ⊆ Z2n : |U | = p, ∃V ∈ C2i , s.t U ⊆ V }, for 1 ≤ p ≤ 2i and 1 ≤ i ≤ T,

C2i(p) := {U ⊆ Z2n : |U | = p, ∃V ∈ C2i , s.t U ⊆ V }, for 1 ≤ p ≤ 2i and 1 ≤ i ≤ T.

We define C1 := Cube+∞ which represents the set of all sets with only one
point. The concepts C2i and C2i represent classes of cubes with specific sides
of length. And the concepts C2i(p) and C2i(p) represent the sets of all specific
fragments of cubes in the cube classes C2i and C2i , where those cube fragments
are all of size p. And we define C2i(p) = ∅, C2i(p) = ∅ if p > 2i.

From the definition of cube fragment, we can easily get the property as follow
which means we can splice small cube fragments into larger cube fragments in
cube class C or cube class C.
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Theorem 3. For any U ∈ C(i) and V ∈ C(j), if d(U, V ) = 2n−rs <
min{d(U), d(V )}, then U

⋃
V ∈ C(i + j), where i + j ≤ 2T and 1 < s ≤ T .

Proof. According to Lemma 6, it is clear that U
⋂

V = ∅. Thus we need only
to prove that there exists W ∈ C such that U

⋃
V ⊆ W . Observe that d(U) >

2n−rs , we can add (2s−1 − i) points to U to construct an (s − 1)-cube W1 with
sides of length {2n−r1 , 2n−r2 , · · · , 2n−rs−1}. Similarly, we can also add (2s−1 − j)
points to construct an (s − 1)-cube W2 with sides of the same length with that
of cube W1. If W1

⋂
W2 �= ∅, suppose w ∈ W1

⋂
W2, u ∈ U , v ∈ V , then we

have d(u, v) ≥ min{d(w, u), d(w, v)} ≥ 2n−rs−1 which is contrary to d(U, V ) =
2n−rs . Thus W1

⋂
W2 = ∅. Then the distance of the two cubes W1 and W2 is

2n−rs and the two cubes can be combined into an s-cube with sides of length
{2n−r1 , 2n−r2 , · · · , 2n−rs} and we denote this cube by W . Since U

⋃
V ⊆ W , it

follows U
⋃

V ∈ C(i + j). �

Note that (2s−1 − i) and (2s−1 − j) are both larger than or equal to 0,
otherwise it will contradict the fact that d(U, V ) = 2n−rs < min{d(U), d(V )}.

Theorem 3 shows that we can splice small cube fragments into larger cube
fragments in cube class C.

Example 2. Let L = 2n − (2n−r1 + 2n−r2 + 2n−r3) where n = 6, r1 = 1, r2 = 3
and r3 = 6.
Let set U1 = {1, 33} ∈ C(2), U2 = {25, 57} ∈ C(2). On account of d(U1, U2) = 8,
therefore U1

⋃
U2 ∈ C(4).

Using the similar argument as in the proof of Theorem3, we can easily carry out
the following corollary. Thus, similarly, we can splice small fragments of cubes
into larger fragments of cube in cube class C.

Corollary 2. Let U ∈ C(i) and V ∈ C(j), if d(U, V ) = 2n−t <
min{d(U), d(V )}, then U

⋃
V ∈ C2s+1(i + j), where rs < t < rs+1, 1 ≤ s <

T, and i + j ≤ 2s+1.

Example 3. Let L = 2n − (2n−r1 + 2n−r2 + 2n−r3) where n = 6, r1 = 1, r2 = 3
and r3 = 6.
Let set U1 = {1, 33} ∈ C(2), U2 = {17, 49} ∈ C(2). On account of d(U1, U2) =
16, therefore U1

⋃
U2 ∈ C(4).

Having introduced the concepts of cube classes and theorem on the equivalence
of two error sequences (Theorem 1), now we give some relations between cubes
and sequences.

Lemma 8 [14]. Let S be a binary sequence with period 2n, and with lin-
ear complexity LC(S) = L = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rT ), where
0 < r1 < r2 < · · · < rT ≤ n. Then the support set of sequence S can be
decomposed into several disjoint cubes, and only one cube has linear complexity
L, other cubes possess distinct linear complexity which are all less than L.
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Because any cube in C has linear complexity L, according to Lemma 4, we have

Corollary 3. Let V1, V2, · · · , Vt be pairwise disjoint cubes in class C and
V =

⋃t
j=1 Vj. Then LC(V ) = L if t is odd; LC(V ) < L for otherwise.

Theorem 4. Let E and E′ be two error sequences. We have E ∼ E′ if and
only if there exist pairwise disjoint cubes U1, U2, · · · , Ud and V1, V2, · · · , Vd′

such that supp(E + E′) = (
⋃d

j=1 Uj)
⋃

(
⋃d′

j′=1 Vj′), where Uj ∈ C, Vj′ ∈ C for
1 ≤ j ≤ d, 1 ≤ j′ ≤ d′ and d′ is even.

Proof. Assume E ∼ E′, according to Theorem1, we have LC(E + E′) < L.
Now, we use a sequential construction procedure to prove the forward direction.
Suppose V = supp(E + E′) = {e1, e2, · · · , et} where t = wH(E + E′).

1. Sequentially take pair U1 = {ei, ej} out from V and put them into a set U1,
where d(ei, ej) > 2n−r1 . Denote the set of the remaining elements by V ′

1 . Note
that pairs are chosen step by step without replacement.
(a) We know that all those pairs U1 = {ei, ej} in U1 are cubes in C2 and

LC(U1) < L, thus LC(V ′
1) < L.

(b) We can prove that V ′
1 can be expressed in a form that V ′

1 =
⋃d1

j=1 W1,j

where d1 = |V ′
1 |/2 and W1,j ∈ C2.

Proof.
(i) For any v, v′ ∈ V ′

1 , we have d(v, v′) ≤ 2n−r1 .
(ii) Sequentially take pair U ′

1 = {ei, ej} out from V ′
1 and put them into

a set U
′
1, where d(ei, ej) = 2n−r1 . Denote the set of the remaining

elements by V ′′
1 .

(iii) We know that for all U ′
1 in U

′
1, LC(U ′

1) = 2n − 2n−r1 , thus U ′
1 ∈ C2

and LC(U′
1) ≤ 2n − 2n−r1 .

(iv) We can prove that V ′′
1 = ∅. If V ′′

1 �= ∅, as d(v, v′) < 2n−r1 for any
v, v′ ∈ V ′′

1 then LC(V ′′
1 ) > 2n − 2n−r1 which leads to LC(V ′

1) =
LC(U′

1 +V ′′
1 ) = max{LC(U′

1 +V ′′
1 )} > 2n − 2n−r1 > L which contra-

dict with LC(V ′
1) < L.

(v) Thus we have derived (b).
2. Sequentially take pair U2 = {W1,i,W1,j} out from V1 and put them into a set

U2, where d(W1,i,W1,j) > 2n−r2 . Denote the set of the remaining elements
by V ′

2 .
(a) We know that all U2 = {W1,i,W1,j} in U2 are union set of some disjoint

cubes in C4 and LC(U2) < L, thus LC(V ′
2) < L.

(b) We can prove that V ′
2 can be expressed in a form that V ′

2 =
⋃d2

j=1 W2,j

where d2 = |V ′
2 |/2 and W2,j ∈ C4.

Proof.
(i) For any 1 ≤ i < j ≤ d2, d(W2,i,W2,j) ≤ 2n−r2

(ii) Sequentially take pair U ′
2 = {W2,i,W2,j} out from V ′

2 and put them
into a set U

′
2, where d(W2,i,W2,j) = 2n−r2 . Denote the set of remain-

ing elements by V ′′
2 .
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(iii) Similar to the reason why V ′′
1 = ∅, we can know V ′′

2 is also an empty
set.

(iv) Thus we have derived (b).
3. Recursively, if we sequentially take elements out from V to form

U1, U2, · · · , UT step by step like above, where Ui is union set of some
pairwise disjoint cubes in C and Ui

⋂
Uj = ∅ for i �= j, and denote the set

of remaining elements as V ′
T , then V ′

T is an empty set or a union set of some
pairwise disjoint cubes in C2T and LC(V ′

T ) < L. Assume V ′
T =

⋃d′

j=1 Vj

where V1, V2, · · · , Vd′ are pairwise disjoint cubes in C. According to
Corollary 3, we have that d′ is even. Consequently, we arrive at the conclusion
that supp(E + E′) can be expressed as a union of pairwise disjoint cubes of
which some are in cube class C and some are in cube class C. Besides, the
number of cubes in cube class C is even.

The backward direction of the theorem can easily be proven as following: Assume
there exists pairwise disjoint cubes U1, U2, · · · , Ud ∈ C and V1, V2, · · · Vd′

such that supp(E + E′) = (
⋃d

j=1 Uj)
⋃

(
⋃d′

j=1 Vj) where d′ is even. Considering

LC(Uj) < L for any 1 ≤ j ≤ d and LC(
⋃d′

j=1 Vj) < L, we have LC(E +E′) < L,
therefore E ∼ E′. �

If E ∼ E′ and supp(E + E′) =
⋃d

j=1 Uj where all Uj are cubes in C2i , then

we say that E is C2i -equivalent to E′ and denote this by E
C2i∼ E′, and for ease

of notations we denote this by E
i∼ E′.

Theorem 5. Let S ∈ A(L) be a 2n-periodic binary sequence with linear com-
plexity L, and E ∈ E be an error sequence. We have LC(S +E) < L if and only
if there exist pairwise disjoint cubes U1, U2, · · · , Ud and V1, V2, . . . , Vd′ such
that supp(E) = (

⋃d
j=1 Uj)

⋃
(
⋃d′

j′=1 Vj′), where Uj ∈ C, Vj′ ∈ C for 1 ≤ j ≤ d,
1 ≤ j′ ≤ d′ and d′ is odd.

Proof. We shall adopt the same procedure as the proof of Theorem4 to proof this
theorem. If LC(S + E) < L, then LC(E) = L. Suppose V = supp(E), then we
can sequentially take U1, U2, · · · , UT out from V step by step and denote the set
of remaining elements in V by V ′

T where Ui are pairwise disjoint cubes in C2i and
V ′
T is a union set of some pairwise disjoint cubes in C2T . Suppose V ′

T =
⋃d′

j=1 Vj

where Vj are pairwise disjoint cubes in C. Because LC(
⋃T

j=1 Uj) < L, then
LC(V ′

T ) = L. According to Lemma 3, we have that d′ is odd.
In the backward direction, supp(E) = (

⋃d
j=1 Uj)

⋃
(
⋃d′

j=1 Vj). Because

LC(
⋃d

j=1 Uj) < L and LC(
⋃d′

j=1 Vj) = L, we have LC(E) = L, thus
LC(S + E) < L. Note that set in {U1, U2, · · · , UT } maybe empty set. �

The above two theorems show that we can decompose the support set of the
sequences into some disjoint cubes. Because the characteristic of cubes is simple
and clear, now we use it to get the characteristics of sequences.
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Let k = 2M (M ≥ 1) be an positive even number. Throughout this section,
if without specially pointing out, we always assume k = 2M , M ≥ 1 and 0 ≤
m ≤ M . Recall that A′

k ⊆ ⋃M
m=0(A(L) + E2m), to analysis the size of A′

k(L),
we shall investigate the following sets:

A(L), A(L) + E2, A(L) + E4, · · · , A(L) + E2M .

Similar to the idea of using the Eratosthenes sieve method to find prime numbers,
we use a sieve method to determine the size of the largest set of sequences
in E′ =

⋃M
m=0 E2m, in which sequences are pairwise non-equivalent, and in

which sequences do not decrease the k-error linear complexity of the resulted
sequences when adding them to those sequences in A(L). In other words, we
use a sieve method to count different sequences in

⋃M
m=0 E2m, subjects to the

equivalence relationship defined in Definition 5 and are required to preserve the
linear complexity of sequences in A(L). We build the iterative sieve process,
which inducts on m for 0 ≤ m ≤ M , on the following three steps:

1. Sequentially eliminate the sequences E from E2m, which satisfy that there
exists sequence E′ ∈ E2m′ such that E′ ∼ E, where 0 ≤ m′ < m,

2. Sequentially eliminate the sequences E from E2m, which satisfy that there
exists sequence E′ ∈ E2m such that E′ ∼ E, where E′ �= E,

3. Sequentially eliminate the sequences E from E2m, which satisfy that LCk(S+
E) < L for S ∈ A(L).

Note that, E0 = {(00 · · · 0)} and A(L) +E0 = A(L). Thus A(L)
⋂ Ak(L) = ∅ if

merr(S) = 2wH(N−L) ≤ k and A(L) ⊆ Ak(L) otherwise.
Step 1 eliminates those sequences from E2m which equivalent to a sequence

with smaller Hamming weight. By this step, the remaining elements in dif-
ferent E2m, for 0 ≤ m ≤ M , will be pairwise non-equivalent. Step 2 elimi-
nates the duplicate sequences within E2m and Step 3 eliminates those error
sequences which satisfy that when adding them to sequences in A(L), the
resulted sequences have k-error linear complexity less than L. When the iter-
ative procedure inducted on m terminates, the remaining sequences in E′ will
be pairwise non-equivalent. And all remaining element E in E′ satisfy that
A(L) + E ⊆ Ak(L).

Next we determine whether or not the sequences in E2m should be eliminated.

Lemma 9. Let E be an error sequence in E2m. If there exists a cube fragment
in C(Impvalue) being subset to supp(E), then (A(L) + E)

⋂ A′
k(L) = ∅. Where

Impvalue = m − k/2 + 2T−1 and 1 ≤ Impvalue ≤ 2m.

Proof. Assume there exists a set U ∈ C(Impvalue), such that U ⊆ supp(E).
Suppose supp(E) = U0

⋃
U where U0

⋂
U = ∅. We choose a set Ū from {V ⊆

Z2n : |V | = 2t − Impvalue, V
⋃

U ∈ C}. And then construct a sequence E′

based on U0 and Ū , such that supp(E′) = U0

⋃
Ū . Because wH(E′) ≤ |U0|+|Ū | =

(2m−Impvalue)+(2T −Impvalue) = k and LC(E+E′) = LC(U+Ū) = L, thus
for any S ∈ A(L) we have LC(S + E + E′) < L. It follows that LCk(S + E) ≤
LC(S + E + E′) < L, thus (A(L) + E)

⋂ A′
k(L) = ∅. �
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Remark that the value of Impvalue = m−k/2+2T−1 indicates the upper bound
of the size of cube fragments in C contained in an error sequence that counts.
In other words, if an error sequence contains a cube fragment in class C with
size equal or larger than Impvalue, then we eliminate it.

Theorem 6. Let E ∈ E2m do not contain a cube fragment in C(Impvalue).
There exists E′ ∈ E2m′ , such that E′ ∼ E, if and only if there exists a cube
fragment in C2t(2t−1+1) being subset to supp(E), where m′ < m and 1 ≤ t ≤ T .

Proof. Assume there exists a set U ∈ C2t(2t−1 + 1), such that U ⊆ supp(E),
where 1 ≤ t ≤ T . Suppose supp(E) = U0

⋃
U where U0

⋂
U = ∅. We choose a

set Ū from {V ⊆ Z2n : |V | = 2t−1 − 1, V
⋃

U ∈ C2t}. And then construct a
sequence E′ based on U0 and Ū , such that U0

⋃
Ū = supp(E′). As wH(E′) =

|U0

⋃
Ū | ≤ |U0|+ |Ū | < |U0|+ |U | = wH(E) and LC(E +E′) = LC(U + Ū) < L.

By Theorem 1, E ∼ E′. Therefore, we conclude that there exists E′ ∈ E2m′

where m′ < m, such that E ∼ E′.
Next, assume E′ ∼ E. From Theorem 4, there exists pairwise disjoint cubes

U1, U2, · · · , Ud ∈ C and V1, V2, · · · , Vd′ ∈ C such that supp(E+E′) =
⋃d

j=1 Uj ,
where d′ is even. If |supp(E)

⋂
W | ≤ 2t−1 for all W ∈ C2t , where 1 ≤ t ≤ T ,

then the number of elements of any set Uj which comes from supp(E) will be at
most half of |Uj |. Because Impvalue = m − k/2 + 2T−1 ≤ 2T−1, the number of
elements of each cube Vj which comes from E is also at most half of |Vj |. Thus
|supp(E)| ≤ |supp(E′)|, which is contrary to the fact that m′ < m. Therefore,
there exists a set U ∈ C2t(2t−1 + 1) such that U ⊆ supp(E). �

By Theorem 6, for a sequence in E2m we can determine whether or not there
exists a sequence with lower Hamming weight being equivalent to it, and then
we eliminate it from E2m if there exists such equivalent sequence. We denote
the set of remaining sequences in E2m by Er

2m = {E ∈ E2m : �E′ ∈ E2m′ , m′ <
m, s.t. E′ ∼ E and � ∃U ∈ C(Impvalue) s.t. U ⊆ supp(E)}. As a result, we have
A′

k(L) ⊆ ⋃M
m=0(A(L) + Er

2m) and (A(L) + Er
2m)

⋂
(A(L) + Er

2m′) = ∅, for 0 ≤
m < m′ ≤ M.

Similarly, for a given error sequence we can determine whether or not there
exists an error sequence with same Hamming weight equivalent to it.

Theorem 7. Let E be an error sequence in Er
2m. Then there exists E′ ∈ E2m,

E′ �= E, such that E′ ∼ E, if and only if there exists a cube fragment in C2t(2t−1)
being subset to supp(E), where 1 ≤ t ≤ T .

Proof. The proof is similar to that of Theorem6. Assume there exists a set
U ∈ C2t(2t−1) such that U ⊆ supp(E), and suppose supp(E) = U0

⋃
U where

U0

⋂
U = ∅. We choose a set Ū from {V ⊆ Z2n : |V | = 2t−1, U

⋃
V ∈ C2t}. And

then construct a sequence E′ based on U0 and Ū , such that supp(E′) = U0

⋃
Ū .

We have wH(E′) = 2m. Otherwise we have U0

⋂
Ū �= ∅, which follows that

(U0

⋂
Ū)

⋃
U ⊆ supp(E) which is contrary to E ∈ Er

2m. Therefore, LC(E +
E′) = LC(U + Ū) < L. Thus, we conclude that there exists E′ ∈ E2m such that
E′ ∼ E.
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Next, assume E ∼ E′, according to Theorem 4, there exist pairwise disjoint
cubes U1, U2, · · · , Ud ∈ C and V1, V2, · · · , Vd′ ∈ C such that supp(E + E′) =
(
⋃d

j=1 Uj)
⋃

(
⋃d′

j=1 Vj). If |supp(E)
⋂

W | < 2t−1 for any W ∈ C2t , where 1 ≤
t ≤ T , then the number of elements of any cube Uj coming from supp(E) is
smaller than half of |Uj |. The number of elements of any cube Vj coming from
supp(E) is at most half of |Vj |, which leads to wH(E′) > wH(E). So there exists
U ∈ C2t(2t−1) such that U ⊆ supp(E). �

We note that, given E ∈ Er
2m, and E′ ∈ E2m, if E′ ∼ E, then it is easy to know

that E′ ∈ Er
2m.

By Theorem 7, we can determine whether the sequences in Er
2m have equiva-

lent sequences with the same Hamming weight and then we can eliminate those
redundant sequences and only keep those which are pairwise non-equivalent.

According to Lemma 9, for any error sequence E in E2m, if there exists a set
U ∈ C(Impvalue) such that U ⊆ supp(E), then (A(L) + E)

⋂ Ak(L) = ∅. In
fact, for error sequences being in Er

2m, it is a necessary and sufficient condition.

Theorem 8. Let E be an error sequence in Er
2m. Then (A(L) + E)

⋂ A′
k(L) =

∅, if and only if there exists a cube fragment in C(Impvalue) being subset to
supp(E), where Impvalue = m − k/2 + 2T−1 and 1 < Impvalue ≤ 2m.

Proof. The proof of the sufficiency is same as that of Lemma 9. Here, we only
prove the necessity. Assume (A(L) + E)

⋂ A′
k(L) = ∅, then there exist E′ ∈ E

such that LC(E + E′) = L. From Theorem 5, there exist pairwise disjoint cubes
U, U1, U2, · · · , Ud ∈ C and V1, V2, · · · , Vd′ ∈ C such that supp(E +
E′) = (

⋃d
j=1 Uj)

⋃
(
⋃d′

j=1 Vj), where d′ is odd. Let W = supp(E)
⋂

supp(E′)

and W1 = (supp(E) − W )
⋂

(
⋃d′

j=1 Vj), W2 = (supp(E) − W )
⋂

(
⋃d

j=1 Uj),

W ′
1 = (supp(E′) − W )

⋂
(
⋃d′

j=1 Vj), W2 = (supp(E′) − W )
⋂

(
⋃d

j=1 Uj). Then

W1

⋃
W ′

1 =
⋃d′

j=1 Vj , W2

⋃
W ′

2 =
⋃d

j=1 Uj . According to the proof of Theorem6,
the number of elements of any cube Uj , which come from E, is at most half of
|Uj |, thus |W2| ≤ |W ′

2|. Therefore 2m − |W1| − |W | ≤ |supp(E′)| − |W ′
1| − |W |,

it follows that 2m − |W1| ≤ |supp(E′)| − (d′ · 2T − |W1|) and |W1| ≥ m −
|supp(E′)|/2 + d′ · 2T−1 ≥ d′ · (m − k/2 + 2T−1). This implies that there exists
U ′ ⊆ V1 and U ′ ∈ C(Impvalue) such that U ′ ⊆ supp(E). �

We remark that if Impvalue = m − k/2 + 2T−1 ≤ 1, then for any E ∈ Er
2m,

there exists a U ∈ C(1) such that supp(E)
⋂

U = U , which follows (A(L) +
E)

⋂ A′
k(L) = ∅, that is, (A(L)+Er

2m)
⋂ A′

k(L) = ∅. If Impvalue > 2m, then for
any E ∈ Er

2m, there does not exist U ∈ C(Impvalue) such that supp(E)
⋂

U =
U , which follows (A(L) + E) ⊆ A′

k(L), that is, (A(L) + Er
2m) ⊆ A′

k(L).
For a given error sequence E, based on Theorem 3 and Corollary 2, we can

easily identify the support set of E whether contains a specific cube fragment
in cube class C or C2i where 1 ≤ i ≤ T by spicing small fragments of cubes to
larger one.
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Theorems 6, 7 and 8 characterize the sequences in E2m which we should
eliminate. After eliminating those error sequences using the above sieve process,
we denote the set of remaining sequences in E2m by

ER
2m := {E ∈ Er

2m : A(L) + E ⊆ A′
k(L) and �E′ ∈ E2m, s.t. E′ ∼ E where E′ �= E}.

Consequently, we have

A′
k(L) =

M⋃

m=0

(A(L) + E
R
2m) and (A(L) + E

R
2m)

⋂
(A(L) + E

R
2m′ ) = ∅, for 0 ≤ m < m

′ ≤ M.

Denote by NE2m(k, T ) the size of ER
2m where k is the number of errors and

T = wH(2n−L). Then we have that the number of sequences with k-error linear
complexity L and linear complexity less than 2n is

N ′
k(L) = (

k/2∑
m=0

NE2m(k, T )) · 2L−1.

In the following we discuss the value of NE2m(k, T ) in different cases.

Theorem 9. Let NE2m(k, T ) be the size of ER
2m as defined above, we have

NE2m(k, T ) = NE2m(k +2, T ) for 2m ≤ k < 2T −2m−2 and NE2m(k, T ) =
NE2m(k, T + 1) for 2m ≤ k < 2T − 2m.

Proof. If 2m ≤ k < 2T − 2m − 2, then m − k+2
2 + 2T−1 > 2m. According to

Theorem 8, we have that E2m + A(L) ⊆ A′
k(L). Because 2m < 2T − 2m − 2,

we have 2m < 2T−1 − 1. Thus there does not exist error sequences in E2m

being C2T -equivalent to E. Therefore, we have NE2m(k, T ) = NE2m(k+2, T ).
Similarly, we have NE2m(k, T ) = NE2m(k, T + 1) for 2m ≤ k < 2T − 2m. �

Note that, the equal between NE2m(k, T ) and NE2m(k′, T ′) means they have
the same form. For example, let L1 = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rT ) and
L2 = 2n − (2n−r′

1 + 2n−r′
2 + · · · + 2n−r′

T + 2n−r′
T+1), if 2m < k < 2T − 2m,

then NE2m(k, T ) = NE2m(k, T + 1) means NE2m(k, T ) is a function of
m, k, r1, r2, · · · , rt and NE2m(k, T +1) is a function of m, k, r′

1, r
′
2, · · · , r′

t where
t ≤ T , and the two functions have the same form on different parameters.

Considering Impvalue = m − k/2 + 2T−1, according to Theorem 8, when
m = 0 or m > 0 and T = 1, we have the following theorem:

Theorem 10. Let NE2m(k, T ) be the size of ER
2m as defined above, when m =

0, we have

NE0(k, T ) =

{
1 if k < 2T ,

0 otherwise
and NE2m(k, 1) = 0.

Theorem 11. Let NE2m(k, T ) be the size of ER
2m as defined above, when T =

2, we have
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NE2m(k, 2) =

{
22m

∑2m
y=1 2y

(
2n−r2

y

)
f1(2m, y) if k=2m,

0 otherwise,

where f1(x, y) :=
∑

{m1
t1 , ··· , mts

s }∈P (x,y)

(
x

t1,··· ,ts
) · ∏s

i=0

((
2r2−r1−1

mi

)
/2mi−1

)ti
,

and P (x, y) = {{mt1
1 , · · · , mts

s } :
∑s

i=1 timi = x,
∑s

i=1 ti = y, ti > 0, m1 <
m2 < · · · < ms}. We define f1(0, 0) = 1, f1(x, 0) = 0 and f1(0, y) = 0 for
x, y > 0.

Note that, P (x, y) is the set of all possible partition of x into y parts.
The set {mt1

1 , · · · , mts
s } represent the multiset {m1, · · · ,m1,m2, · · · ,

m2, · · · ,ms, · · · ,ms} where the multiplicity of mi is ti for 1 ≤ i ≤ s.

Proof. Firstly, we calculate the number of error sequences in E2m with spe-
cific structure by combinational theory. Then we figure out the number of error
sequences which equivalent to those which have specific structures. And at last,
we can get the size of ER

2m.
Let E be an error sequence in ER

2m. The support set of E can be regard as
a union set of 2m cubes U1, U2, · · · , U2m where Uj ∈ C2(1) for 1 ≤ j ≤ 2m.
We can know that d(Ui, Uj) ≤ 2n−r1 , otherwise there exists a cube fragment in
C2(2) being subset to the support set of E which leading to E �∈ ER

2m according
to Theorem 8. When k = 2m, we have Impvalue = 2, that is, the support set
of E must not contain a cube fragment in C2T (2). Thus, d(Ui, Uj) < 2n−r1 for
1 ≤ i < j ≤ 2m. We classify those cubes U1, U2, · · · , U2m as follow:

W (Uj) = {Uj}
⋃

{Us : d(Us, Uj) > 2n−r2 , 1 ≤ s ≤ 2m}.

Suppose {W (Uj) : 1 ≤ j ≤ 2m} = {Wj : 1 ≤ j ≤ y}, that is, there are
y different classes. And suppose the multiset {|Wj | : 1 ≤ j ≤ y} equal to
{m1, · · · ,m1,m2, · · · ,m2, · · · ,ms, · · · ,ms} where the multiplicity of mj is tj
for 1 ≤ j ≤ s and for simplify we denote it by p = {mt1

1 , · · · ,mts
s }. Because

Impvalue = 2, we have d(Wi,Wj) < 2n−r2 . By combinational theory, we can
get the number of error sequences in E2m which have the same structure as E is

α = (2r1−1)2m · 22m ·
s∏

j=1

(
2r2−r1−1

mj

)tj

·
(

y

t1, t2, · · · , ts

)
· 2y ·

(
2n−r2

y

)
.

We say an error sequence E′ have the same structure as E if E′ could also
be decomposed into 2m cube fragments U ′

1, U
′
2, · · · , U ′

2m where U ′
j ∈ C2(1) for

1 ≤ j ≤ 2m, and those cube fragments can be also classified into y categories
W ′

j , 1 ≤ j ≤ y, and the set of the size of those categories is also p, that is,
{|W ′

j | : 1 ≤ j ≤ y} = p. Note that, if E′ have the same structure as E then
A(L) + E′ ⊆ A′

k(L).
Next we consider the number of error sequences that equivalent to E. For

each Uj , suppose Uj = {u}, we can construct 2r1−1 error sequence C2-equivalent
to E by replacing the point u by u′ where u′ ≡ u mod 2n−r1+1. Thus we can find
(2r1−1)2m error sequences C2-equivalent to E. For each Wj , suppose |Wj | = m0
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and Wj = {u1, u2, · · · , um0}, we can construct an error sequence C4-equivalent to
E by replacing any two point ui1 , ui2 in Wj by u′

i1
, u′

i2
where d(u′

it
, uit) = 2n−r1

for t = 1, 2. And we can know that the constructed two error sequences which
based on modifying the same two points will be C2-equivalent. Thus we can
construct

(
m0
0

)
+

(
m0
2

)
+ · · · +

(
m0

2�m0/2	
)

= 2m0−1 error sequences C4-equivalent
to E based on Uj and the total number of error sequences in E2m which C4-
equivalent to E is

∏s
j=1(2

mj−1)tj .
Notice that, all of the constructed error sequences have the same structure as

E and it is easy to verify that if an error sequence in E2m equivalent to E then
it must be having the same structure. Therefore, the number of error sequences
in ER

2m that have the same structure as E is

α/(2r1−1)2m/
s∏

j=1

(2mj−1)tj = 22m+y
(2n−r2

y

)( y

t1, t2, · · · , ts

) s∏

j=1

((2r2−r1−1

mj

)
/2mj−1

)tj

.

So we sum the number of error sequences with different structures and get the
total number of error sequences in ER

2m when T = 2 and k = 2m is

NE2m(2m, 2) = 22m
2m∑
y=1

2y
(

2n−r2

y

)
f1(2m, y)

where f1(x, y) is as above defined.
When k > 2m, we have Impvalue = m − k/2 + 2T−1 ≤ 1, thus

NE2m(k, 2) = 0. �

Note that, when k is not very large, the form of function f1(x, y) can be
very simple. For example, f1(5, 4) = 24r2−4r1−4(2r2−r1−1 − 1). From the proof
of Theorem 11, we can know that it is easy to get the total number of error
sequences with the same structure and determine the number of error sequences
which equivalent to it for a given error sequence with specific structure. Using a
similar method, we can get:

Theorem 12. Let NE2m(k, T ) be the size of ER
2m as defined above, when T =

3, we have

NE2m(k, 3) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if k > 2m + 4,

22m
∑2m

y1=1

∑y1
y2=1 2

y1+y2
(2n−r3

y2

)
f1(2m, y1)f2(y1, y2) if k = 2m + 4,

NE2m(2m + 4, 3) + Δ1(2m) if k = 2m + 2,

NE2m(2m + 2, 3) + Δ2(2m) if k = 2m,

where

Δ1(2m) =
∑

x, y, xi, yi≥0

2
2m−x1+x2+y+y2−2y3

(
x

x1

)(
x2 · 2r3−r2−1 − x

y − y1

)(
2n−r3

x2, y3, y2 − 2y3

)
g(x, x2)·

f1(2m − 2x1, 2x − 2x1 + y)f2(y1, y2)

+
2m∑

y=2

y∑

y2=2

� y2
2 �∑

y3=1
2
2m+y+y2−2y3

(
2n−r3

y3, y2 − 2y3

)
f1(2m, y)f2(y, y2),
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Δ2(2m) =
∑

x, y, z, xi, yi, zi≥0

22m−y1+y2−y3+z+z3−2z4
( y

y1

)(y2 · 2r3−r2−1 − y

z2

)

( 2n−r3

x, y3, y2 − y3, z4, z3 − y3 − 2z4

)

f1(2m − 2x − 2y1, x + 2y − 2y1 + z)f2(z − z1 − z2, z3)g(y, y2)h(x, z1)+

∑

y, z, yi, zi≥0

22m−y1+y2−y3+z+z3−2z4
( y

y1

)(y2 · 2r3−r2−1 − y

z2

)

( 2n−r3

y3, y2 − y3, z4, z3 − y3 − 2z4

)

f1(2m − 2y1, 2y − 2y1 + z)f2(z − z2, z3)g(y, y2).

f2(x, y) :=
∑

{mt1
1 , ··· , mts

s }∈P (x,y)

(
x

t1, · · · , ts

)
·

s∏
i=0

(
2r3−r2−1

mi

)ti

.

g(x, y) :=
∑

{mt1
1 , ··· , mts

s }∈P (x,y)

(
x

t1, · · · , ts

)
·

s∏
i=0

((
2r3−r2−1

mi

)
/2mi−1

)ti

.

h(x, y) :=
∑

{mt1
1 , ··· , mts

s }∈P (x,y)

(
x

t1, · · · , ts

)
·

s∏
i=0

(
2r3−r2−1

mi + 1

)ti

.

Note, Δ1(2m) represents the number of error sequences in ER
2m of which the

support set contains a cube fragment in C2T (2) but not contains a cube fragment
in C2T (3). And Δ2(2m) represents the number of error sequences in ER

2m of which
the support set contains a cube fragment in C2T (3) but not contains a cube
fragment in C2T (4). And the upper bounds of those parameters x, y, z, xi, yi, zi
in the summation are determined in the expressions. For example, in Δ1(2m),
we can get 0 ≤ x1 ≤ m to make f1(2m − 2x1, 2x − 2x1 + y) �= 0.

According to Theorem 10–12, we can get the counting function N ′
k(L) for

any k when T = wH(2n − L) ≤ 3.

Corollary 4. Let N ′
k(L) be the number of sequences with k-error linear com-

plexity L and linear complexity less than 2n. Then we have

N ′
k(L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if L = 2n − 2n−r1 ,

(2k
∑k

y=1 2
y
(2n−r2

y

)
f1(k, y)) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 ),

(
∑2

i=0 NEk−4+2i(k + 2i, 3)

+Δ1(k − 2) + Δ1(k) + Δ2(k)) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3 )

where NEk−4+2i(k + 2i, 3), Δ1(k), Δ2(k) are given in Theorem12.

For k ∈ {2, 4, 6}, according to Theorem 9–12, we can get Table 1 directly except
for the value of b4 and c3.

In Table 1: a1 = 2n−r1(2n−r1+1 − 3 · 2r2−r1−1 − 1), a2 = a1 − 2n+r3−2r1 ,
a3 = a1 + 2n−r2+1 + 2n+r2−2r1 , b1 =

∑4
y=1 2y+4

(
2n−r2

y

)
f1(4, y), b2 =
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Table 1. NE2m for k ∈ {2, 4, 6}

24
∑4

y1=1

∑y1
y2=1 2y1+y2

(
2n−r3

y2

)
f1(4, y1)f2(y1, y2) + Δ1(4), b3 = b2 + Δ2(4),

b4 = b3 + 2n−r3+1 + 2n+r3−2r2(1 + 5 · 22r2−2r1−1 + 24r2−4r1−2),
c1 = 26

∑6
y1=1

∑y1
y2=1 2y1+y2

(
2n−r3

y2

)
f1(6, y1)f2(y1, y2), c2 = c1 + Δ1(6) + Δ2(6),

c3 = c2 + δ1 + δ2,
δ1 = 2n−r3+1(2n−r2 − 2r3−r2−1)(2n+r2−2r1+1 − 2r2−r1 − 22r2−2r1−1 − 2r3+r2−2r1

+ 2),
δ2 = 2n+r3−r2−r1(2n+2r2−3r1+1+2n−r1+2−2r3+2r2−3r1−1−2r3−r1−9·23r2−3r1−2−
3 · 22r2−2r1−1 − 9 · 2r2−r1−1 − 1).

Next we explain how to calculate b4 and c3. Because b4 = NE4(4, 4) and
Impvalue = 8 > 4, we have A(L) + E4 ⊂ A′

4(L). Compared with b3 which
Impvalue = 4, we only need to add those error sequences whose support set
contain an cube fragment in C2T (4). By combinational theory, the number of
error sequences in E4 whose support set contain a cube fragment in C4(4) is
α = (2r1−1)4 · (2r2−r1−1)2 · 2n−r2 and it is easy to know there are β = (2r1−1)4 ·
(2r2−r1−1)2 · 2r3−r2−1 error sequences in E4 equivalent to it, where (2r1−1)4,
(2r2−r1−1)2, 2r3−r2−1 are respectively the numbers of error sequences which C2,
C4, C8-equivalent to it. Thus the number of error sequences in ER

4 which contain
a cube fragment in C4(4) is α/β = 2n−r3+1. Similarly, we can get the number of
error sequences whose support set do not contain a cube fragment in C4(4) but
contain a cube fragment in C4(3) and C8(4) is (2r1−1)4 · 22 · (2r2−r1−1)3 · 22 ·
(2r3−r2−1)2 ·2 ·2n−r3 and there are (2r1−1)4 ·2r2−r1−1 error sequences equivalent
to it. Thus the number of this kind of error sequences in ER

4 is 2n+r3−2r1+1.
If the support set of error sequences do not contain a cube fragment in C4(3),
then it must contain two cube fragments in C4(2) and the distance of the two
cube fragments is 2n−r3 . The number of this kind of error sequences in ER

4

is 2n+r3−2r2(1 + 22r2−2r1−1 + 24r2−4r1−2). Thus we have b4 = b3 + 2n−r3+1 +
2n+r3−2r2(1 + 5 · 22r2−2r1−1 + 24r2−4r1−2).

Because c3 = NE6(6, 4) and Impvalue = 8, comparing with c2 which
Impvalue = 4, we need to add the error sequences in E6 which contains cube
fragment in C8(4), C8(5) and C8(6) based on c2. Using the similar method
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in calculating b4, we can get the number of error sequences in ER
6 of which

the support set contains a cube fragment in C4(4) is δ1. And the number of
error sequences in ER

6 which contain a cube fragment in C8(5) or C8(6) but not
contain a cube fragment in C4(4) is δ2. Where δ1 and δ2 are given above.

According Table 1, we can get the following theorem directly:

Theorem 13. Let N ′
k(L) be the number of binary 2n-periodic sequences with

k-error linear complexity L and linear complexity less than 2n, then we have

N ′
2(L) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if L = 2n − 2n−r1

(1 + a1) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 )

(1 + a3) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3 + x), 0 ≤ x < 2n−r3 ,

N ′
4(L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if L = 2n − 2n−r1

b1 · 2L−1 if L = 2n − (2n−r1 + 2n−r2 )

(1 + a3 + b3) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3 )

(1 + a3 + b4) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3 + x), 0 ≤ x < 2n−r3 ,

N ′
6(L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if L = 2n − 2n−r1

c1 · 2L−1 if L = 2n − (2n−r1 + 2n−r2 )

(1 + a2 + b2 + c2) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3 )

(1 + a3 + b4 + c3) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3 + x), 0 ≤ x < 2n−r3 .

Note that, N ′
2(L), N ′

4(L) can be compared with [8,12,13] and N ′
6(L) is examined

by a computer.
When k become large, the analytical expression of N ′

k(L) will become too
complexity. Based on our method, it is easy to construct an efficient algorithm to
calculate the value N ′

k(L). Table 2 lists part of the results by running a computer
program on Numk(L), which represents the the size of E′R =

∑k/2
m=0 E

R
2m, for

0 ≤ k < 2n−1 and 0 < L < 2n, where n = 6. And it can be verified that∑64
L=0 N ′

k(L) = 263 for k = 2, 4, 6, · · · , 32 which implies the correctness of this
method.

4 Characterization for Other Cases

In this section, we firstly consider A′′
k(L), where k is even. Let k = 2M , then

A′′
k(L) ⊆ ⋃M

m=1(A(L)+E2m−1). Similar to the analysis on A′
k(L), we sequentially

eliminate the sequences E from E2m−1 which satisfy that there exists sequence
E′ ∈ E2m′−1, where 0 ≤ m′ < m, such that E′ ∼ E. And we denote the set
of remaining error sequences by Er

2m−1. Then we sequentially eliminate those
sequences E from E2m−1 which satisfy that there exists sequence E′ ∈ E2m−1,
such that E′ ∼ E. And finally, we sequentially eliminate the sequences E from
E2m−1 which satisfy that LCk(S +E) < L for S ∈ A(L). Similar to Theorems 6,
7 and 8, we can get the following theorems.

Lemma 10. Let E be an error sequence in E2m−1. If there exists a cube frag-
ment in C(Impvalue) being subset to supp(E), then (A(L) + E)

⋂ A′
k(L) = ∅.

Where Impvalue = m − k
2 + 2T−1 and 1 ≤ Impvalue ≤ 2m − 1.
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Table 2. Part of the results on N ′
k(L) for n = 6

L wH k = 6 k = 8 · · · k = 26 k = 28 k = 30

· · · ≤ 1 0 0 0 0 0

16 2 32800768 843448320 0 0 0

24 2 12361216 105334272 0 0 0

28 2 1364608 2915424 0 0 0

30 2 127456 205896 0 0 0

31 2 32032 51480 0 0 0

40 2 114688 65536 0 0 0

44 2 6400 256 0 0 0

46 2 448 16 0 0 0

47 2 112 4 0 0 0

52 2 0 0 0 0 0

54 2 0 0 0 0 0

55 2 0 0 0 0 0

58 2 0 0 0 0 0

59 2 0 0 0 0 0

61 2 0 0 0 0 0

8 3 74698177 4269895680 0 0 0

12 3 73495057 4000596704 0 0 0

14 3 71447441 3611187752 0 0 0

15 3 68356625 3111545144 0 0 0

20 3 49468513 1797161728 0 0 0

22 3 46577129 1420375632 0 0 0

23 3 41906633 993236724 0 0 0

26 3 22363121 292078272 0 0 0

27 3 15385637 133105152 0 0 0

29 3 3774849 22800792 0 0 0

36 3 854113 7480320 0 0 0

38 3 753929 4554704 0 0 0

39 3 618185 2459764 · · · 0 0 0

42 3 274577 361600 0 0 0

43 3 154997 122304 0 0 0

45 3 29265 16448 0 0 0

50 3 3985 0 0 0 0

51 3 901 0 0 0 0

53 3 65 0 0 0 0

57 3 1 0 0 0 0



34 W. Pan et al.

Table 2. (continued)

L wH k = 6 k = 8 · · · k = 26 k = 28 k = 30

4 4 75611761 4501725649 80627405461098496 17127899176960000 0

6 4 75611761 4501648441 7325469431074816 236126248960000 0

7 4 75611761 4501494025 2073916240700416 59031562240000 0

10 4 75154969 4385391113 19048518337536 139314069504 0

11 4 75154969 4384858301 4936272171264 34828517376 0

13 4 74325013 4190250125 609858701856 4353564672 0

18 4 51711097 2174133193 399572992 1048576 0

19 4 51711097 2172898813 101072896 262144 0

21 4 50589805 1979144701 12535808 32768 0

25 4 28803133 693096413 388864 1024 0

34 4 942649 11435209 0 0 0

35 4 942649 11396605 0 0 0

37 4 898381 9273725 0 0 0

41 4 418429 1975901 0 0 0

49 4 9949 9949 0 0 0

2 5 75611761 4501777129 765884877961138529 1149125482916201841 735663252850019217

3 5 75611761 4501777129 549379354729134933 488415562254909925 83465513150235525

5 5 75611761 4501751389 127414035703583729 39208852967342625 1678693908850625

9 5 75154969 4385746325 1928380228863833 175169988640833 2240855430049

17 5 51711097 2174956117 296601473321 9419426161 42981185

33 5 942649 11460949 36457 497 1

1 6 75611761 4501777129 956315644440505325 2075085937425745213 3695373947956092637

In the 2nd column, wH indicates the value of T = wH(2n − L).

Note that N ′
k(L) = Numk(L) ·2L−1, and for each column, it can be verified that N ′

k(0)+
∑63

L=1 Numk(L) ·
2L−1 = 263.

Theorem 14. Let E ∈ E2m−1 do not contain a cube fragment in C(Impvalue).
There exists E′ ∈ E2m′−1, such that E′ ∼ E, if and only if there exists a cube
fragment in C2t(2t−1+1) being subset to supp(E), where m′ < m and 1 ≤ t ≤ T .

Theorem 15. Let E be an error sequence in Er
2m−1, then there exists E′ ∈

E2m−1, E′ �= E, such that E′ ∼ E, if and only if there exists a cube fragment in
C2t(2t−1) being subset to supp(E), where 1 ≤ t ≤ T .

Theorem 16. Let E be an error sequence in Er
2m−1, then (A(L)+E)

⋂ A′
k(L) =

∅, if and only if there exists a cube fragment in C(Impvalue) being subset to
supp(E), where Impvalue = m − k/2 + 2T−1 and 1 < Impvalue ≤ 2m − 1.

Similarly, we can get the counting function N ′′
k (L), which is almost identical

with N ′
k(L).

In addition, for the cases in which k is odd, according to Lemma 3, we can
know that

A′
2M+1(L) = A′

2M (L), A′′
2M−1(L) = A′′

2M (L) for 0 < L < 2n.
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As a result, for any k we can get the complete counting function Nk(L). For
small k we can give the analytical expression directly and when k become large
we can give the numbers of sequences with given k-error linear complexity by
computer.

5 Conclusions

In this paper, we study the distribution of 2n-periodic binary sequences with
given k-error linear complexity. Firstly, we build an equivalence relationship on
set of error sequences to reduce the problem of counting the number of 2n-
periodic binary sequences with fixed k-error linear complexity to the problem
of figuring out how many equivalence classes the set of error sequences can be
split into. We use the cube fragment and cube class, which are concept tools
extended from the concept of a cube, to characterize error sequences. Based on
a new sieve process, we eliminate the overlap among and within different sets
of error sequences. We conclude that if the error sequences contain specific cube
fragments, then it should be eliminated. Through compressing the support set
of error sequences, we determine whether or not error sequences contain those
specific cube fragments and we can easily get the number of error sequences
in specific equivalence classes. As a result, we can manually get the recurrence
expression of counting function for k ∈ {2, 4, 6}. For other even k, we claim
that an automatic computer program can be build according to this method
and efficiently solve the problem for any even k. After that, we explain that this
method can be applied to other cases. Thus we can get the complete counting
function for any k. Compared with that in [8,12,13], it can be seen that new
and more concise expressions than that got by previous methods can be obtained
following this method. We believe this method can be used to settle the problem
for some other special periodic sequences.
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